\(\int \frac {1}{\sqrt {g \sin (e+f x)} \sqrt {a+a \sin (e+f x)} (c+d \sin (e+f x))} \, dx\) [28]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [B] (warning: unable to verify)
   Fricas [B] (verification not implemented)
   Sympy [F]
   Maxima [F]
   Giac [F(-2)]
   Mupad [F(-1)]

Optimal result

Integrand size = 39, antiderivative size = 168 \[ \int \frac {1}{\sqrt {g \sin (e+f x)} \sqrt {a+a \sin (e+f x)} (c+d \sin (e+f x))} \, dx=-\frac {\sqrt {2} \arctan \left (\frac {\sqrt {a} \sqrt {g} \cos (e+f x)}{\sqrt {2} \sqrt {g \sin (e+f x)} \sqrt {a+a \sin (e+f x)}}\right )}{\sqrt {a} (c-d) f \sqrt {g}}+\frac {2 d \arctan \left (\frac {\sqrt {a} \sqrt {c} \sqrt {g} \cos (e+f x)}{\sqrt {c+d} \sqrt {g \sin (e+f x)} \sqrt {a+a \sin (e+f x)}}\right )}{\sqrt {a} \sqrt {c} (c-d) \sqrt {c+d} f \sqrt {g}} \]

[Out]

-arctan(1/2*cos(f*x+e)*a^(1/2)*g^(1/2)*2^(1/2)/(g*sin(f*x+e))^(1/2)/(a+a*sin(f*x+e))^(1/2))*2^(1/2)/(c-d)/f/a^
(1/2)/g^(1/2)+2*d*arctan(cos(f*x+e)*a^(1/2)*c^(1/2)*g^(1/2)/(c+d)^(1/2)/(g*sin(f*x+e))^(1/2)/(a+a*sin(f*x+e))^
(1/2))/(c-d)/f/a^(1/2)/c^(1/2)/(c+d)^(1/2)/g^(1/2)

Rubi [A] (verified)

Time = 0.36 (sec) , antiderivative size = 168, normalized size of antiderivative = 1.00, number of steps used = 5, number of rules used = 4, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.103, Rules used = {3017, 2861, 211, 3009} \[ \int \frac {1}{\sqrt {g \sin (e+f x)} \sqrt {a+a \sin (e+f x)} (c+d \sin (e+f x))} \, dx=\frac {2 d \arctan \left (\frac {\sqrt {a} \sqrt {c} \sqrt {g} \cos (e+f x)}{\sqrt {c+d} \sqrt {a \sin (e+f x)+a} \sqrt {g \sin (e+f x)}}\right )}{\sqrt {a} \sqrt {c} f \sqrt {g} (c-d) \sqrt {c+d}}-\frac {\sqrt {2} \arctan \left (\frac {\sqrt {a} \sqrt {g} \cos (e+f x)}{\sqrt {2} \sqrt {a \sin (e+f x)+a} \sqrt {g \sin (e+f x)}}\right )}{\sqrt {a} f \sqrt {g} (c-d)} \]

[In]

Int[1/(Sqrt[g*Sin[e + f*x]]*Sqrt[a + a*Sin[e + f*x]]*(c + d*Sin[e + f*x])),x]

[Out]

-((Sqrt[2]*ArcTan[(Sqrt[a]*Sqrt[g]*Cos[e + f*x])/(Sqrt[2]*Sqrt[g*Sin[e + f*x]]*Sqrt[a + a*Sin[e + f*x]])])/(Sq
rt[a]*(c - d)*f*Sqrt[g])) + (2*d*ArcTan[(Sqrt[a]*Sqrt[c]*Sqrt[g]*Cos[e + f*x])/(Sqrt[c + d]*Sqrt[g*Sin[e + f*x
]]*Sqrt[a + a*Sin[e + f*x]])])/(Sqrt[a]*Sqrt[c]*(c - d)*Sqrt[c + d]*f*Sqrt[g])

Rule 211

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]/a)*ArcTan[x/Rt[a/b, 2]], x] /; FreeQ[{a, b}, x]
&& PosQ[a/b]

Rule 2861

Int[1/(Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]*Sqrt[(c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]]), x_Symbol] :> D
ist[-2*(a/f), Subst[Int[1/(2*b^2 - (a*c - b*d)*x^2), x], x, b*(Cos[e + f*x]/(Sqrt[a + b*Sin[e + f*x]]*Sqrt[c +
 d*Sin[e + f*x]]))], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 -
 d^2, 0]

Rule 3009

Int[Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]/(Sqrt[(g_.)*sin[(e_.) + (f_.)*(x_)]]*((c_) + (d_.)*sin[(e_.) +
(f_.)*(x_)])), x_Symbol] :> Dist[-2*(b/f), Subst[Int[1/(b*c + a*d + c*g*x^2), x], x, b*(Cos[e + f*x]/(Sqrt[g*S
in[e + f*x]]*Sqrt[a + b*Sin[e + f*x]]))], x] /; FreeQ[{a, b, c, d, e, f, g}, x] && NeQ[b*c - a*d, 0] && EqQ[a^
2 - b^2, 0]

Rule 3017

Int[1/(Sqrt[(g_.)*sin[(e_.) + (f_.)*(x_)]]*Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]*((c_) + (d_.)*sin[(e_.)
+ (f_.)*(x_)])), x_Symbol] :> Dist[b/(b*c - a*d), Int[1/(Sqrt[g*Sin[e + f*x]]*Sqrt[a + b*Sin[e + f*x]]), x], x
] - Dist[d/(b*c - a*d), Int[Sqrt[a + b*Sin[e + f*x]]/(Sqrt[g*Sin[e + f*x]]*(c + d*Sin[e + f*x])), x], x] /; Fr
eeQ[{a, b, c, d, e, f, g}, x] && NeQ[b*c - a*d, 0] && (EqQ[a^2 - b^2, 0] || EqQ[c^2 - d^2, 0])

Rubi steps \begin{align*} \text {integral}& = \frac {\int \frac {1}{\sqrt {g \sin (e+f x)} \sqrt {a+a \sin (e+f x)}} \, dx}{c-d}-\frac {d \int \frac {\sqrt {a+a \sin (e+f x)}}{\sqrt {g \sin (e+f x)} (c+d \sin (e+f x))} \, dx}{a (c-d)} \\ & = -\frac {(2 a) \text {Subst}\left (\int \frac {1}{2 a^2+a g x^2} \, dx,x,\frac {a \cos (e+f x)}{\sqrt {g \sin (e+f x)} \sqrt {a+a \sin (e+f x)}}\right )}{(c-d) f}+\frac {(2 d) \text {Subst}\left (\int \frac {1}{a c+a d+c g x^2} \, dx,x,\frac {a \cos (e+f x)}{\sqrt {g \sin (e+f x)} \sqrt {a+a \sin (e+f x)}}\right )}{(c-d) f} \\ & = -\frac {\sqrt {2} \arctan \left (\frac {\sqrt {a} \sqrt {g} \cos (e+f x)}{\sqrt {2} \sqrt {g \sin (e+f x)} \sqrt {a+a \sin (e+f x)}}\right )}{\sqrt {a} (c-d) f \sqrt {g}}+\frac {2 d \arctan \left (\frac {\sqrt {a} \sqrt {c} \sqrt {g} \cos (e+f x)}{\sqrt {c+d} \sqrt {g \sin (e+f x)} \sqrt {a+a \sin (e+f x)}}\right )}{\sqrt {a} \sqrt {c} (c-d) \sqrt {c+d} f \sqrt {g}} \\ \end{align*}

Mathematica [A] (verified)

Time = 8.22 (sec) , antiderivative size = 289, normalized size of antiderivative = 1.72 \[ \int \frac {1}{\sqrt {g \sin (e+f x)} \sqrt {a+a \sin (e+f x)} (c+d \sin (e+f x))} \, dx=-\frac {2 \left (-2 \arctan \left (\sqrt {\tan \left (\frac {1}{2} (e+f x)\right )}\right )+\frac {d \left (1+\frac {c-d}{\sqrt {-c^2+d^2}}\right ) \arctan \left (\frac {\sqrt {c} \sqrt {\tan \left (\frac {1}{2} (e+f x)\right )}}{\sqrt {d-\sqrt {-c^2+d^2}}}\right )}{\sqrt {c} \sqrt {d-\sqrt {-c^2+d^2}}}+\frac {d \left (-c+d+\sqrt {-c^2+d^2}\right ) \arctan \left (\frac {\sqrt {c} \sqrt {\tan \left (\frac {1}{2} (e+f x)\right )}}{\sqrt {d+\sqrt {-c^2+d^2}}}\right )}{\sqrt {c} \sqrt {-c^2+d^2} \sqrt {d+\sqrt {-c^2+d^2}}}\right ) \cos \left (\frac {1}{2} (e+f x)\right ) \left (\cos \left (\frac {1}{2} (e+f x)\right )+\sin \left (\frac {1}{2} (e+f x)\right )\right ) \sqrt {\tan \left (\frac {1}{2} (e+f x)\right )}}{(c-d) f \sqrt {g \sin (e+f x)} \sqrt {a (1+\sin (e+f x))}} \]

[In]

Integrate[1/(Sqrt[g*Sin[e + f*x]]*Sqrt[a + a*Sin[e + f*x]]*(c + d*Sin[e + f*x])),x]

[Out]

(-2*(-2*ArcTan[Sqrt[Tan[(e + f*x)/2]]] + (d*(1 + (c - d)/Sqrt[-c^2 + d^2])*ArcTan[(Sqrt[c]*Sqrt[Tan[(e + f*x)/
2]])/Sqrt[d - Sqrt[-c^2 + d^2]]])/(Sqrt[c]*Sqrt[d - Sqrt[-c^2 + d^2]]) + (d*(-c + d + Sqrt[-c^2 + d^2])*ArcTan
[(Sqrt[c]*Sqrt[Tan[(e + f*x)/2]])/Sqrt[d + Sqrt[-c^2 + d^2]]])/(Sqrt[c]*Sqrt[-c^2 + d^2]*Sqrt[d + Sqrt[-c^2 +
d^2]]))*Cos[(e + f*x)/2]*(Cos[(e + f*x)/2] + Sin[(e + f*x)/2])*Sqrt[Tan[(e + f*x)/2]])/((c - d)*f*Sqrt[g*Sin[e
 + f*x]]*Sqrt[a*(1 + Sin[e + f*x])])

Maple [B] (warning: unable to verify)

Leaf count of result is larger than twice the leaf count of optimal. \(579\) vs. \(2(133)=266\).

Time = 3.49 (sec) , antiderivative size = 580, normalized size of antiderivative = 3.45

method result size
default \(-\frac {\sqrt {\csc \left (f x +e \right )-\cot \left (f x +e \right )}\, \left (\sqrt {-\left (c -d \right ) \left (c +d \right )}\, \sqrt {\left (\sqrt {-\left (c -d \right ) \left (c +d \right )}-d \right ) c}\, \arctan \left (\frac {\sqrt {\csc \left (f x +e \right )-\cot \left (f x +e \right )}\, c}{\sqrt {\left (\sqrt {-\left (c -d \right ) \left (c +d \right )}+d \right ) c}}\right ) d -\sqrt {\left (\sqrt {-\left (c -d \right ) \left (c +d \right )}-d \right ) c}\, \arctan \left (\frac {\sqrt {\csc \left (f x +e \right )-\cot \left (f x +e \right )}\, c}{\sqrt {\left (\sqrt {-\left (c -d \right ) \left (c +d \right )}+d \right ) c}}\right ) c d +\sqrt {\left (\sqrt {-\left (c -d \right ) \left (c +d \right )}-d \right ) c}\, \arctan \left (\frac {\sqrt {\csc \left (f x +e \right )-\cot \left (f x +e \right )}\, c}{\sqrt {\left (\sqrt {-\left (c -d \right ) \left (c +d \right )}+d \right ) c}}\right ) d^{2}-\sqrt {-\left (c -d \right ) \left (c +d \right )}\, \sqrt {\left (\sqrt {-\left (c -d \right ) \left (c +d \right )}+d \right ) c}\, \operatorname {arctanh}\left (\frac {\sqrt {\csc \left (f x +e \right )-\cot \left (f x +e \right )}\, c}{\sqrt {\left (\sqrt {-\left (c -d \right ) \left (c +d \right )}-d \right ) c}}\right ) d -\sqrt {\left (\sqrt {-\left (c -d \right ) \left (c +d \right )}+d \right ) c}\, \operatorname {arctanh}\left (\frac {\sqrt {\csc \left (f x +e \right )-\cot \left (f x +e \right )}\, c}{\sqrt {\left (\sqrt {-\left (c -d \right ) \left (c +d \right )}-d \right ) c}}\right ) c d +\sqrt {\left (\sqrt {-\left (c -d \right ) \left (c +d \right )}+d \right ) c}\, \operatorname {arctanh}\left (\frac {\sqrt {\csc \left (f x +e \right )-\cot \left (f x +e \right )}\, c}{\sqrt {\left (\sqrt {-\left (c -d \right ) \left (c +d \right )}-d \right ) c}}\right ) d^{2}-2 \arctan \left (\sqrt {\csc \left (f x +e \right )-\cot \left (f x +e \right )}\right ) \sqrt {-\left (c -d \right ) \left (c +d \right )}\, \sqrt {\left (\sqrt {-\left (c -d \right ) \left (c +d \right )}-d \right ) c}\, \sqrt {\left (\sqrt {-\left (c -d \right ) \left (c +d \right )}+d \right ) c}\right ) \left (\cos \left (f x +e \right )+\sin \left (f x +e \right )+1\right )}{f \sqrt {a \left (1+\sin \left (f x +e \right )\right )}\, \sqrt {g \sin \left (f x +e \right )}\, \left (c -d \right ) \sqrt {-\left (c -d \right ) \left (c +d \right )}\, \sqrt {\left (\sqrt {-\left (c -d \right ) \left (c +d \right )}-d \right ) c}\, \sqrt {\left (\sqrt {-\left (c -d \right ) \left (c +d \right )}+d \right ) c}}\) \(580\)

[In]

int(1/(c+d*sin(f*x+e))/(g*sin(f*x+e))^(1/2)/(a+a*sin(f*x+e))^(1/2),x,method=_RETURNVERBOSE)

[Out]

-1/f*(csc(f*x+e)-cot(f*x+e))^(1/2)*((-(c-d)*(c+d))^(1/2)*(((-(c-d)*(c+d))^(1/2)-d)*c)^(1/2)*arctan((csc(f*x+e)
-cot(f*x+e))^(1/2)*c/(((-(c-d)*(c+d))^(1/2)+d)*c)^(1/2))*d-(((-(c-d)*(c+d))^(1/2)-d)*c)^(1/2)*arctan((csc(f*x+
e)-cot(f*x+e))^(1/2)*c/(((-(c-d)*(c+d))^(1/2)+d)*c)^(1/2))*c*d+(((-(c-d)*(c+d))^(1/2)-d)*c)^(1/2)*arctan((csc(
f*x+e)-cot(f*x+e))^(1/2)*c/(((-(c-d)*(c+d))^(1/2)+d)*c)^(1/2))*d^2-(-(c-d)*(c+d))^(1/2)*(((-(c-d)*(c+d))^(1/2)
+d)*c)^(1/2)*arctanh((csc(f*x+e)-cot(f*x+e))^(1/2)*c/(((-(c-d)*(c+d))^(1/2)-d)*c)^(1/2))*d-(((-(c-d)*(c+d))^(1
/2)+d)*c)^(1/2)*arctanh((csc(f*x+e)-cot(f*x+e))^(1/2)*c/(((-(c-d)*(c+d))^(1/2)-d)*c)^(1/2))*c*d+(((-(c-d)*(c+d
))^(1/2)+d)*c)^(1/2)*arctanh((csc(f*x+e)-cot(f*x+e))^(1/2)*c/(((-(c-d)*(c+d))^(1/2)-d)*c)^(1/2))*d^2-2*arctan(
(csc(f*x+e)-cot(f*x+e))^(1/2))*(-(c-d)*(c+d))^(1/2)*(((-(c-d)*(c+d))^(1/2)-d)*c)^(1/2)*(((-(c-d)*(c+d))^(1/2)+
d)*c)^(1/2))*(cos(f*x+e)+sin(f*x+e)+1)/(a*(1+sin(f*x+e)))^(1/2)/(g*sin(f*x+e))^(1/2)/(c-d)/(-(c-d)*(c+d))^(1/2
)/(((-(c-d)*(c+d))^(1/2)-d)*c)^(1/2)/(((-(c-d)*(c+d))^(1/2)+d)*c)^(1/2)

Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 310 vs. \(2 (133) = 266\).

Time = 1.58 (sec) , antiderivative size = 3175, normalized size of antiderivative = 18.90 \[ \int \frac {1}{\sqrt {g \sin (e+f x)} \sqrt {a+a \sin (e+f x)} (c+d \sin (e+f x))} \, dx=\text {Too large to display} \]

[In]

integrate(1/(c+d*sin(f*x+e))/(g*sin(f*x+e))^(1/2)/(a+a*sin(f*x+e))^(1/2),x, algorithm="fricas")

[Out]

[-1/4*(sqrt(2)*(a*c^2 + a*c*d)*g*sqrt(-1/(a*g))*log((4*sqrt(2)*(3*cos(f*x + e)^2 + (3*cos(f*x + e) + 4)*sin(f*
x + e) - cos(f*x + e) - 4)*sqrt(a*sin(f*x + e) + a)*sqrt(g*sin(f*x + e))*sqrt(-1/(a*g)) + 17*cos(f*x + e)^3 +
3*cos(f*x + e)^2 + (17*cos(f*x + e)^2 + 14*cos(f*x + e) - 4)*sin(f*x + e) - 18*cos(f*x + e) - 4)/(cos(f*x + e)
^3 + 3*cos(f*x + e)^2 + (cos(f*x + e)^2 - 2*cos(f*x + e) - 4)*sin(f*x + e) - 2*cos(f*x + e) - 4)) - sqrt(-(a*c
^2 + a*c*d)*g)*d*log(((128*a*c^4 + 256*a*c^3*d + 160*a*c^2*d^2 + 32*a*c*d^3 + a*d^4)*g*cos(f*x + e)^5 - (128*a
*c^4 + 192*a*c^3*d + 64*a*c^2*d^2 - 4*a*c*d^3 - a*d^4)*g*cos(f*x + e)^4 - 2*(208*a*c^4 + 368*a*c^3*d + 195*a*c
^2*d^2 + 32*a*c*d^3 + a*d^4)*g*cos(f*x + e)^3 + 2*(64*a*c^4 + 94*a*c^3*d + 29*a*c^2*d^2 - 4*a*c*d^3 - a*d^4)*g
*cos(f*x + e)^2 + (289*a*c^4 + 480*a*c^3*d + 230*a*c^2*d^2 + 32*a*c*d^3 + a*d^4)*g*cos(f*x + e) + 8*((16*c^3 +
 24*c^2*d + 10*c*d^2 + d^3)*cos(f*x + e)^4 - (24*c^3 + 28*c^2*d + 7*c*d^2)*cos(f*x + e)^3 + 51*c^3 + 59*c^2*d
+ 17*c*d^2 + d^3 - (66*c^3 + 83*c^2*d + 27*c*d^2 + 2*d^3)*cos(f*x + e)^2 + (25*c^3 + 28*c^2*d + 7*c*d^2)*cos(f
*x + e) + ((16*c^3 + 24*c^2*d + 10*c*d^2 + d^3)*cos(f*x + e)^3 - 51*c^3 - 59*c^2*d - 17*c*d^2 - d^3 + (40*c^3
+ 52*c^2*d + 17*c*d^2 + d^3)*cos(f*x + e)^2 - (26*c^3 + 31*c^2*d + 10*c*d^2 + d^3)*cos(f*x + e))*sin(f*x + e))
*sqrt(-(a*c^2 + a*c*d)*g)*sqrt(a*sin(f*x + e) + a)*sqrt(g*sin(f*x + e)) + (a*c^4 + 4*a*c^3*d + 6*a*c^2*d^2 + 4
*a*c*d^3 + a*d^4)*g + ((128*a*c^4 + 256*a*c^3*d + 160*a*c^2*d^2 + 32*a*c*d^3 + a*d^4)*g*cos(f*x + e)^4 + 4*(64
*a*c^4 + 112*a*c^3*d + 56*a*c^2*d^2 + 7*a*c*d^3)*g*cos(f*x + e)^3 - 2*(80*a*c^4 + 144*a*c^3*d + 83*a*c^2*d^2 +
 18*a*c*d^3 + a*d^4)*g*cos(f*x + e)^2 - 4*(72*a*c^4 + 119*a*c^3*d + 56*a*c^2*d^2 + 7*a*c*d^3)*g*cos(f*x + e) +
 (a*c^4 + 4*a*c^3*d + 6*a*c^2*d^2 + 4*a*c*d^3 + a*d^4)*g)*sin(f*x + e))/(d^4*cos(f*x + e)^5 + (4*c*d^3 + d^4)*
cos(f*x + e)^4 + c^4 + 4*c^3*d + 6*c^2*d^2 + 4*c*d^3 + d^4 - 2*(3*c^2*d^2 + d^4)*cos(f*x + e)^3 - 2*(2*c^3*d +
 3*c^2*d^2 + 4*c*d^3 + d^4)*cos(f*x + e)^2 + (c^4 + 6*c^2*d^2 + d^4)*cos(f*x + e) + (d^4*cos(f*x + e)^4 - 4*c*
d^3*cos(f*x + e)^3 + c^4 + 4*c^3*d + 6*c^2*d^2 + 4*c*d^3 + d^4 - 2*(3*c^2*d^2 + 2*c*d^3 + d^4)*cos(f*x + e)^2
+ 4*(c^3*d + c*d^3)*cos(f*x + e))*sin(f*x + e))))/((a*c^3 - a*c*d^2)*f*g), 1/4*(2*sqrt(2)*(a*c^2 + a*c*d)*g*sq
rt(1/(a*g))*arctan(1/4*sqrt(2)*sqrt(a*sin(f*x + e) + a)*sqrt(g*sin(f*x + e))*sqrt(1/(a*g))*(3*sin(f*x + e) - 1
)/(cos(f*x + e)*sin(f*x + e))) + sqrt(-(a*c^2 + a*c*d)*g)*d*log(((128*a*c^4 + 256*a*c^3*d + 160*a*c^2*d^2 + 32
*a*c*d^3 + a*d^4)*g*cos(f*x + e)^5 - (128*a*c^4 + 192*a*c^3*d + 64*a*c^2*d^2 - 4*a*c*d^3 - a*d^4)*g*cos(f*x +
e)^4 - 2*(208*a*c^4 + 368*a*c^3*d + 195*a*c^2*d^2 + 32*a*c*d^3 + a*d^4)*g*cos(f*x + e)^3 + 2*(64*a*c^4 + 94*a*
c^3*d + 29*a*c^2*d^2 - 4*a*c*d^3 - a*d^4)*g*cos(f*x + e)^2 + (289*a*c^4 + 480*a*c^3*d + 230*a*c^2*d^2 + 32*a*c
*d^3 + a*d^4)*g*cos(f*x + e) + 8*((16*c^3 + 24*c^2*d + 10*c*d^2 + d^3)*cos(f*x + e)^4 - (24*c^3 + 28*c^2*d + 7
*c*d^2)*cos(f*x + e)^3 + 51*c^3 + 59*c^2*d + 17*c*d^2 + d^3 - (66*c^3 + 83*c^2*d + 27*c*d^2 + 2*d^3)*cos(f*x +
 e)^2 + (25*c^3 + 28*c^2*d + 7*c*d^2)*cos(f*x + e) + ((16*c^3 + 24*c^2*d + 10*c*d^2 + d^3)*cos(f*x + e)^3 - 51
*c^3 - 59*c^2*d - 17*c*d^2 - d^3 + (40*c^3 + 52*c^2*d + 17*c*d^2 + d^3)*cos(f*x + e)^2 - (26*c^3 + 31*c^2*d +
10*c*d^2 + d^3)*cos(f*x + e))*sin(f*x + e))*sqrt(-(a*c^2 + a*c*d)*g)*sqrt(a*sin(f*x + e) + a)*sqrt(g*sin(f*x +
 e)) + (a*c^4 + 4*a*c^3*d + 6*a*c^2*d^2 + 4*a*c*d^3 + a*d^4)*g + ((128*a*c^4 + 256*a*c^3*d + 160*a*c^2*d^2 + 3
2*a*c*d^3 + a*d^4)*g*cos(f*x + e)^4 + 4*(64*a*c^4 + 112*a*c^3*d + 56*a*c^2*d^2 + 7*a*c*d^3)*g*cos(f*x + e)^3 -
 2*(80*a*c^4 + 144*a*c^3*d + 83*a*c^2*d^2 + 18*a*c*d^3 + a*d^4)*g*cos(f*x + e)^2 - 4*(72*a*c^4 + 119*a*c^3*d +
 56*a*c^2*d^2 + 7*a*c*d^3)*g*cos(f*x + e) + (a*c^4 + 4*a*c^3*d + 6*a*c^2*d^2 + 4*a*c*d^3 + a*d^4)*g)*sin(f*x +
 e))/(d^4*cos(f*x + e)^5 + (4*c*d^3 + d^4)*cos(f*x + e)^4 + c^4 + 4*c^3*d + 6*c^2*d^2 + 4*c*d^3 + d^4 - 2*(3*c
^2*d^2 + d^4)*cos(f*x + e)^3 - 2*(2*c^3*d + 3*c^2*d^2 + 4*c*d^3 + d^4)*cos(f*x + e)^2 + (c^4 + 6*c^2*d^2 + d^4
)*cos(f*x + e) + (d^4*cos(f*x + e)^4 - 4*c*d^3*cos(f*x + e)^3 + c^4 + 4*c^3*d + 6*c^2*d^2 + 4*c*d^3 + d^4 - 2*
(3*c^2*d^2 + 2*c*d^3 + d^4)*cos(f*x + e)^2 + 4*(c^3*d + c*d^3)*cos(f*x + e))*sin(f*x + e))))/((a*c^3 - a*c*d^2
)*f*g), -1/4*(sqrt(2)*(a*c^2 + a*c*d)*g*sqrt(-1/(a*g))*log((4*sqrt(2)*(3*cos(f*x + e)^2 + (3*cos(f*x + e) + 4)
*sin(f*x + e) - cos(f*x + e) - 4)*sqrt(a*sin(f*x + e) + a)*sqrt(g*sin(f*x + e))*sqrt(-1/(a*g)) + 17*cos(f*x +
e)^3 + 3*cos(f*x + e)^2 + (17*cos(f*x + e)^2 + 14*cos(f*x + e) - 4)*sin(f*x + e) - 18*cos(f*x + e) - 4)/(cos(f
*x + e)^3 + 3*cos(f*x + e)^2 + (cos(f*x + e)^2 - 2*cos(f*x + e) - 4)*sin(f*x + e) - 2*cos(f*x + e) - 4)) + 2*s
qrt((a*c^2 + a*c*d)*g)*d*arctan(1/4*((8*c^2 + 8*c*d + d^2)*cos(f*x + e)^2 - 9*c^2 - 8*c*d - d^2 + 2*(4*c^2 + 3
*c*d)*sin(f*x + e))*sqrt((a*c^2 + a*c*d)*g)*sqrt(a*sin(f*x + e) + a)*sqrt(g*sin(f*x + e))/((2*a*c^3 + 3*a*c^2*
d + a*c*d^2)*g*cos(f*x + e)^3 + (a*c^3 + a*c^2*d)*g*cos(f*x + e)*sin(f*x + e) - (2*a*c^3 + 3*a*c^2*d + a*c*d^2
)*g*cos(f*x + e))))/((a*c^3 - a*c*d^2)*f*g), 1/2*(sqrt(2)*(a*c^2 + a*c*d)*g*sqrt(1/(a*g))*arctan(1/4*sqrt(2)*s
qrt(a*sin(f*x + e) + a)*sqrt(g*sin(f*x + e))*sqrt(1/(a*g))*(3*sin(f*x + e) - 1)/(cos(f*x + e)*sin(f*x + e))) -
 sqrt((a*c^2 + a*c*d)*g)*d*arctan(1/4*((8*c^2 + 8*c*d + d^2)*cos(f*x + e)^2 - 9*c^2 - 8*c*d - d^2 + 2*(4*c^2 +
 3*c*d)*sin(f*x + e))*sqrt((a*c^2 + a*c*d)*g)*sqrt(a*sin(f*x + e) + a)*sqrt(g*sin(f*x + e))/((2*a*c^3 + 3*a*c^
2*d + a*c*d^2)*g*cos(f*x + e)^3 + (a*c^3 + a*c^2*d)*g*cos(f*x + e)*sin(f*x + e) - (2*a*c^3 + 3*a*c^2*d + a*c*d
^2)*g*cos(f*x + e))))/((a*c^3 - a*c*d^2)*f*g)]

Sympy [F]

\[ \int \frac {1}{\sqrt {g \sin (e+f x)} \sqrt {a+a \sin (e+f x)} (c+d \sin (e+f x))} \, dx=\int \frac {1}{\sqrt {a \left (\sin {\left (e + f x \right )} + 1\right )} \sqrt {g \sin {\left (e + f x \right )}} \left (c + d \sin {\left (e + f x \right )}\right )}\, dx \]

[In]

integrate(1/(c+d*sin(f*x+e))/(g*sin(f*x+e))**(1/2)/(a+a*sin(f*x+e))**(1/2),x)

[Out]

Integral(1/(sqrt(a*(sin(e + f*x) + 1))*sqrt(g*sin(e + f*x))*(c + d*sin(e + f*x))), x)

Maxima [F]

\[ \int \frac {1}{\sqrt {g \sin (e+f x)} \sqrt {a+a \sin (e+f x)} (c+d \sin (e+f x))} \, dx=\int { \frac {1}{\sqrt {a \sin \left (f x + e\right ) + a} {\left (d \sin \left (f x + e\right ) + c\right )} \sqrt {g \sin \left (f x + e\right )}} \,d x } \]

[In]

integrate(1/(c+d*sin(f*x+e))/(g*sin(f*x+e))^(1/2)/(a+a*sin(f*x+e))^(1/2),x, algorithm="maxima")

[Out]

integrate(1/(sqrt(a*sin(f*x + e) + a)*(d*sin(f*x + e) + c)*sqrt(g*sin(f*x + e))), x)

Giac [F(-2)]

Exception generated. \[ \int \frac {1}{\sqrt {g \sin (e+f x)} \sqrt {a+a \sin (e+f x)} (c+d \sin (e+f x))} \, dx=\text {Exception raised: TypeError} \]

[In]

integrate(1/(c+d*sin(f*x+e))/(g*sin(f*x+e))^(1/2)/(a+a*sin(f*x+e))^(1/2),x, algorithm="giac")

[Out]

Exception raised: TypeError >> an error occurred running a Giac command:INPUT:sage2:=int(sage0,sageVARx):;OUTP
UT:index.cc index_m operator + Error: Bad Argument Valueindex.cc index_m operator + Error: Bad Argument ValueD
one

Mupad [F(-1)]

Timed out. \[ \int \frac {1}{\sqrt {g \sin (e+f x)} \sqrt {a+a \sin (e+f x)} (c+d \sin (e+f x))} \, dx=\int \frac {1}{\sqrt {g\,\sin \left (e+f\,x\right )}\,\sqrt {a+a\,\sin \left (e+f\,x\right )}\,\left (c+d\,\sin \left (e+f\,x\right )\right )} \,d x \]

[In]

int(1/((g*sin(e + f*x))^(1/2)*(a + a*sin(e + f*x))^(1/2)*(c + d*sin(e + f*x))),x)

[Out]

int(1/((g*sin(e + f*x))^(1/2)*(a + a*sin(e + f*x))^(1/2)*(c + d*sin(e + f*x))), x)